Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 692: 108547, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32828796

RESUMO

Anthrax lethal factor (LF) is a critical component of the anthrax toxin, and functions intracellularly as a zinc-dependent endopeptidase targeting proteins involved in maintaining critical host signaling pathways. To reach the cytoplasm, LF requires to be unfolded and guided through the narrow protective antigen pore in a pH-dependent process. The current study sought to address the question as to whether LF is capable of retaining its metal ion when exposed to a low-pH environment (similar to that found in late endosomes) and an unfolding stress (induced by urea). Using a combination of tryptophan fluorescence spectroscopy and chelation studies, we show that a decrease in the pH value (from 7.0 to 5.0) leads to a pronounced shift in the onset of structural alterations in LF to lower urea concentrations. More importantly, the enzyme was found to retain its Zn2+ ion beyond the unfolding transitions monitored by Trp fluorescence, a finding indicative of tight metal binding to LF in a non-native state. In addition, an analysis of red-edge excitation shift (REES) spectra suggests the protein to maintain residual structure (a feature necessary for metal binding) even at very high denaturant concentrations. Furthermore, studies using the chromophoric chelator 4-(2-pyridylazo)resorcinol (PAR) revealed LF's Zn2+ ion to become accessible to complexation at urea concentrations in between those required to cause structural changes and metal dissociation. This phenomenon likely originates from the conversion of a PAR-inaccessible (closed) to a PAR-accessible (open) state of LF at intermediate denaturant concentrations.


Assuntos
Antígenos de Bactérias/química , Bacillus anthracis/química , Toxinas Bacterianas/química , Quelantes/química , Zinco/química , Concentração de Íons de Hidrogênio , Desnaturação Proteica
2.
Anal Biochem ; 604: 113826, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32622975

RESUMO

Thermolysin (TL) is an industrially important zinc endopeptidase, and the prototype of the M4 family of metallopeptidases. The catalytic function of TL and its relatives is typically assessed using chromogenic or more sensitive fluorescent peptides, with the latter substrates relying on Förster resonance energy transfer (FRET). Here, we demonstrate that a FRET-quenched heptapeptide designed on the basis of the enzyme's substrate specificity (Dabcyl-FKFLGKE-EDANS) is efficiently cleaved by TL and dispase (a TL-like protease) in between the Phe3 and Leu4 residues. The specificity constants (determined at pH 7.4 and 25 °C) for TL and dispase (3.6 × 106 M-1 s-1 and 4.6 × 106 M-1 s-1, respectively) were found to be amongst the highest documented for any TL substrate. Maximal peptide cleavage rates were achieved at pH 6.5 and a temperature of 65 °C. In view of the sensitivity of the assay, concentrations as low as 10 pM TL could be detected. Furthermore, the rate of hydrolysis of Dabcyl-FKFLGKE-EDANS was slow or immeasurable with some other unrelated metallo-, serine- and cysteine proteases, suggesting that the peptide has the potential to serve as a selective substrate for TL and TL-like proteases.


Assuntos
Proteínas de Bactérias/química , Geobacillus stearothermophilus/enzimologia , Termolisina/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...